
Corso Practical Data Science with Amazon SageMaker
PANORAMICA

Corso di preparazione al conseguimento della
Certificazione AWS Certified Machine Learning – Specialty
Contattaci ora per ricevere tutti i dettagli e per richiedere, senza alcun impegno, di parlare direttamente con uno dei nostri Docenti CLICCA QUI.
Oppure chiamaci subito al nostro numero verde 800-177596.
OBIETTIVI DEL CORSO
In this course you will learn how to solve a real-world use case with Machine Learning (ML) and produce actionable results using Amazon SageMaker. This course walks through the stages of a typical data science process for Machine Learning from analyzing and visualizing a dataset to preparing the data, and feature engineering. Individuals will also learn practical aspects of model building, training, tuning, and deployment with Amazon SageMaker. Real life use case includes customer retention analysis to inform customer loyalty programs.
CONTENUTI DEL CORSO
Practical Data Science with Amazon SageMaker
Module 1: Introduction to machine learning
- Types of ML
- Job Roles in ML
- Steps in the ML pipeline
Module 2: Introduction to data prep and SageMaker
- Training and test dataset defined
- Introduction to SageMaker
- Demonstration: SageMaker console
- Demonstration: Launching a Jupyter notebook
Module 3: Problem formulation and dataset preparation
- Business challenge: Customer churn
- Review customer churn dataset
Module 4: Data analysis and visualization
- Demonstration: Loading and visualizing your dataset
- Exercise 1: Relating features to target variables
- Exercise 2: Relationships between attributes
- Demonstration: Cleaning the data
Module 5: Training and evaluating a model
- Types of algorithms
- XGBoost and SageMaker
- Demonstration: Training the data
- Exercise 3: Finishing the estimator definition
- Exercise 4: Setting hyper parameters
- Exercise 5: Deploying the model
- Demonstration: hyper parameter tuning with SageMaker
- Demonstration: Evaluating model performance
Module 6: Automatically tune a model
- Automatic hyper parameter tuning with SageMaker
- Exercises 6-9: Tuning jobs
Module 7: Deployment / production readiness
- Deploying a model to an endpoint
- A/B deployment for testing
- Auto Scaling
- Demonstration: Configure and test auto scaling
- Demonstration: Check hyper parameter tuning job
- Demonstration: AWS Auto Scaling
- Exercise 10-11: Set up AWS Auto Scaling
Module 8: Relative cost of errors
- Cost of various error types
- Demo: Binary classification cutoff
Module 9: Amazon SageMaker architecture and features
- Accessing Amazon SageMaker notebooks in a VPC
- Amazon SageMaker batch transforms
- Amazon SageMaker Ground Truth
- Amazon SageMaker Neo
TIPOLOGIA DEL CORSO
Corso di Formazione con Docente;
INFRASTRUTTURA LABORATORIALE
Per tutte le tipologie di erogazione, il Corsista può accedere alle attrezzature e ai sistemi presenti nei Nostri laboratori o direttamente presso i data center del Vendor o dei suoi provider autorizzati in modalità remota h24. Ogni partecipante dispone di un accesso per implementare le varie configurazioni avendo così un riscontro pratico e immediato della teoria affrontata. Ecco di seguito alcuni scenari tratti dalle attività laboratoriali:

PREREQUISITI
Si consiglia la partecipazione ai seguenti corsi:
DURATA E FREQUENZA
Durata Intensiva 1gg;
Varie tipologie di Frequenza Estensiva ed Intensiva.
DOCENTI
I docenti sono Istruttori accreditati Amazon AWS e certificati in altre tecnologie IT, con anni di esperienza pratica nel settore e nella Formazione.
MODALITÀ DI ISCRIZIONE
Le iscrizioni sono a numero chiuso per garantire ai tutti i partecipanti un servizio eccellente.
L’iscrizione avviene richiedendo di essere contattati dal seguente Link, o contattando la sede al numero verde 800-177596 o inviando una richiesta all’email [email protected].
CALENDARIO
- Corso Practical Data Science with Amazon SageMaker (Formula Intensiva) – Su Richiesta